The role of regulated CFTR trafficking in epithelial secretion.

نویسندگان

  • Carol A Bertrand
  • Raymond A Frizzell
چکیده

The focus of this review is the regulated trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) in distal compartments of the protein secretory pathway and the question of how changes in CFTR cellular distribution may impact on the functions of polarized epithelial cells. We summarize data concerning the cellular localization and activity of CFTR and attempt to synthesize often conflicting results from functional studies of regulated endocytosis and exocytosis in CFTR-expressing cells. In some instances, findings that are inconsistent with regulated CFTR trafficking may result from the use of overexpression systems or nonphysiological experimental conditions. Nevertheless, judging from data on other transporters, an appropriate cellular context is necessary to support regulated CFTR trafficking, even in epithelial cells. The discovery that disease mutations can influence CFTR trafficking in distal secretory and recycling compartments provides support for the concept that regulated CFTR recycling contributes to normal epithelial function, including the control of apical CFTR channel density and epithelial protein secretion. Finally, we propose molecular mechanisms for regulated CFTR endocytosis and exocytosis that are based on CFTR interactions with other proteins, particularly those whose primary function is membrane trafficking. These models provide testable hypotheses that may lead to elucidation of CFTR trafficking mechanisms and permit their experimental manipulation in polarized epithelial cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1

Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...

متن کامل

The Mechanistic Links between Insulin and Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Cl− Channel

The cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel belongs to the ATP-binding cassette (ABC) transporter superfamily and regulates Cl- secretion in epithelial cells for water secretion. Loss-of-function mutations to the CFTR gene cause dehydrated mucus on the apical side of epithelial cells and increase the susceptibility of bacterial infection, especially in the airway ...

متن کامل

Vasoactive intestinal peptide, forskolin, and genistein increase apical CFTR trafficking in the rectal gland of the spiny dogfish, Squalus acanthias. Acute regulation of CFTR trafficking in an intact epithelium.

Defective trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) is the most common cause of cystic fibrosis. In chloride-secreting epithelia, it is well established that CFTR localizes to intracellular organelles and to apical membranes. However, it is controversial whether secretagogues regulate the trafficking of CFTR. To investigate whether acute hormonal stimulation ...

متن کامل

Trafficking of GFP-tagged DeltaF508-CFTR to the plasma membrane in a polarized epithelial cell line.

The DeltaF508 mutation reduces the amount of cystic fibrosis transmembrane conductance regulator (CFTR) expressed in the plasma membrane of epithelial cells. However, a reduced temperature, butyrate compounds, and "chemical chaperones" allow DeltaF508-CFTR to traffic to the plasma membrane and increase Cl(-) permeability in heterologous and nonpolarized cells. Because trafficking is affected by...

متن کامل

Involvement of phosphatidylinositol 3-kinase in cAMP- and cGMP-induced duodenal epithelial CFTR activation in mice.

Although phosphatidylinositol 3-kinase (PI3K) is essential for several cellular signal transductions, its role in the regulation of cystic fibrosis transmembrane conductance regulator (CFTR) activity in intestinal epithelial cells is poorly understood. Therefore, the possible involvement of PI3K in the regulation of cAMP- and cGMP-induced duodenal epithelial CFTR activation was investigated in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 285 1  شماره 

صفحات  -

تاریخ انتشار 2003